## 2-5 Derivatives as rates of change

## Problem 1)

A particle is moving along the $z$ axis such that its position is given by $s=t^{3}+6 t^{2}+9 t$
a) How often does the particle stop moving?
b) What is the particle's acceleration at each of these moments?
c) Find the speed each time the particle stops accelerating.
d) At $\mathrm{t}=5$ is the particle speeding up? Or slowing down?
e) Find the total distance the particle moved from $\mathrm{t}=0$ to $\mathrm{t}=2$

## Problem 2)

The equations $s=1.86 t^{2}$ and $s=11.44 t^{2}$ are the freefall equations for Mars and Jupiter respectively. Where $s$ is the distance from original drop in meters, and t is the time that passes in seconds.
a) How long does it take a rock to reach $27.8 \mathrm{~m} / \mathrm{s}$ on each planet?
b) Which rock travels farther (if any) before it reaches this speed?

## Problem 3)

A bactericide was added in order to try and quell a bacteria population inside of a test broth. The population continued to grow for a while before the bactericide started working (the goal is to kill off the bacteria). The growth of the population was given by $p=192300+10 t^{3}-20 t^{4}$, where t is the time in hours
a) When did the bactericide start working?
b) What was the rate of change of the population 5 hours after application of the bactericide?
c) Would the starting population of bacteria change the time when the bactericide started working? Why, why not?

## Answer Key

1) 

a. Twice
b. -6 and 12
c. Speed is 2
d. Speeding up
e. 320
2)
a. 7.47 seconds and 1.22 seconds
b. The mars rock
3)
a. $\frac{1}{4}$ hours
b. -9250 bacteria/hour
c. No

