- A Clarification
 - Taking the derivative of $\frac{x^2}{-1}$ X

Higher Order Derivatives

- You can take multiple derivatives of a single function
- Notation...

Higher Order Derivatives

• You can take multiple derivatives of a single function

Example- $f(x) = x^3 + 5x + 2$

Higher Order Derivatives

• You can take multiple derivatives of a single function

Example- $y = x^2 + 10x - 24$

Higher Order Derivatives

- Context...
- Each derivative is a RATE OF CHANGE

Derivatives – Word problems

Working with Derivatives as Rate of Change...

- Most common word problem
- SVA
- S- Position (why is it s not p?)
- V- Velocity
- A-Acceleration
- J- Jerk

Derivatives – Word problems

Working with Derivatives as Rate of Change...

- Speed up Vs Slow down
 - Idea...
 - Scenario 1
 - f'(2)=7, f"(2)=5
 - Scenario 2
 - f'(2)=-5, f"(2)=14
 - Mnemonic Bird

Derivatives – Word problems

Working with Derivatives as Rate of Change...

- Caution...
 - Distance VS Displacement
 - We will worry about this later

• Speed Vs Velocity.

A Clarification

This is an application of derivative

- The key words are RATE OF CHANGE
- AVERAGE rate of change vs INSTANTANEOUS rate of change

Average	Instantaneous
End-Start	- derivative
Total time	function
	evaluated
Key word:	Key word:
AVERAGE	AT/IN/WHEN

- A Clarification
 - Examples
 - Average:
 - Mr. Mori was driving... what was the average velocity?
 - People were voting for... On average, how many ballots were...
 - Water was filling a... on average, how quickly was the height rising? Instantaneous:
 - Mr. Mori was driving... how fast was he driving 5 minutes...?
 - People were voting for... When was ballots coming in the quickest?
 - Water was filling... 3 minutes after it started,...?

Examples

- The equation $s = (1/2)gt^2$ is used to find the distance from rest of an object in freefall, where s is distance, g is the gravitational <u>constant</u> and t is time from release. At sea level the gravitational constant is $g = 9.8 \text{m}/\text{sec}^2$
- 1) If Mr. Mori were to drop a ball 30 feet from the ground, (assuming near sea level)
 - A. What would the ball's speed and acceleration be 1 second after drop?
 - B. What would the ball's speed and acceleration be 3 seconds after drop?
 - C. Sometimes this equation is written as $h = -4.9t^2$ Explain WHY this variation exists.
 - D. PROVE that the ball is always speeding up

Examples

A blast blows a heavy rock straight up so that the height can be found using $h = 160t - 16t^2$ where h is height and t is time after blast.

- 1) How high does the rock go?
- 2) What is the speed when the rock is 256 ft above the ground?
- 3) Does this equation hold for any t? If not, what t values does this NOT work for and why?

Examples

A blast blows a heavy rock straight up so that the height can be found using $h = 160t - 16t^2$ where h is height and t is time after blast.

- 1) How high does the rock go?
- 2) What is the speed when the rock is 256 ft above the ground?
- 3) Does this equation hold for any t? If not, what t values does this NOT work for and why?
- 4) What is the average velocity of the rock from the time of the blast to t=10?

Graphing

Given this graph of a particles position on the y axis, where y is position x is time, please graph the derivative function then it's acceleration function

Summary

- Be careful of instantaneous vs average rate of change
 - Derivative functions = instantaneous
 - Slope = average
- Speed vs Velocity
- Classic problems
 - Particle motion
 - Free fall
 - Population growth
 - Depth/height of water in a draining/filling container
- Make sure to know what the context is!
- Graphing
 - Remember what derivatives represent!